
Novell AppWare

A System for Developing Network Applications

White Paper

July 1993

(c)1993 by Novell, Inc., 122 East 1700 South, Provo, Utah 84606, USA

All rights reserved. No part of this publication may be reproduced,
photocopied, stored on a retrieval system, or transmitted without the express
prior written consent of the publisher.

For more information about Novell products,
contact Novell as follows:

In the U.S. or Canada: Call 1-800-NETWARE (1-800-638-9273).
In all other locations, contact your local Novell office or call
1-801-429-5588.

Novell, the N design, NetWare, Btrieve, Novell DOS are registered
trademarks, and AppWare, AppWare Bus, AppWare Foundation, AppWare
Loadable Module (ALM), IPX, NetWare Loadable Module, Novell Visual
AppBuilder, ODI, and Technical Support Alliance are trademarks of Novell,
Inc. UNIX is a registered trademark of Unix System Laboratories, Inc., a
wholly owned subsidiary of Novell, Inc.
Macintosh is a registered trademark, and MPW is a trademark of Apple
Computer, Inc. Banyan is a registered trademark of Banyan Systems, Inc.
Easel is a registered trademark of Easel Corporation. Gupta is a trademark of
Gupta Technologies, Inc. Intel is a registered trademark of Intel Corporation.
OS/2 is a registered trademark, and SAAis a trademark of International
Business Machines Corporation. Excel, LANManager and Windows NT are
trademarks of Microsoft Corporation. Motorola is a registered trademark of
Motorola, Inc. Oracle is a registered trademark of Oracle Corporation.
Powersoft is a trademark of Powersoft Corporation. ONCand TIRPCis a
trademark of Sun Microsystems, Inc. Sybase is a registered trademark of
Sybase, Inc. UnixWare is a registered trademark of Univel, Inc. X/Open is a
trademark of X/Open Company, Ltd.

Using This Document

This paper provides an overview of AppWare, Novell's system for developing
network applications. It describes the components of the AppWare system
and explains how developers and users will interact with this new layer of
software.

The AppWare system is comprised of two major software components: the
AppWare Foundation and the AppWare Bus. These components provide a
consistent set of platform-independent, network-independent and service-
focused interfaces and engines that accommodate the needs of commercial
and corporate developers who need to create network applications quickly
and easily.

This paper is divided into the following sections.

AppWare: An Overview gives an overview of the development challenges
AppWare addresses.

AppWare: A Technical Description discusses the two major components
of AppWare, as well as the wide range of third-party tools and support
services for AppWare.

Appendices cover the technologies discussed in this paper in more detail.

Glossary describes the key terms introduced in this paper.

AppWare: An Overview

What Is AppWare?

AppWare is a new layer of software that leverages today's popular
operating systems, development tools and applications. AppWare
allows both commercial and corporate software developers to create
and deploy network applications more quickly and easily. The role of
the AppWare layer is similar to the role of the operating system layer.
By shielding developers from the complexities of hardware, the
operating system has accelerated the growth of new desktop
applications. Similarly, AppWare will shield developers from the
complexities of networks and accelerate the growth of network
applications. As a result, users can more easily run a wide variety of
applications that take full advantage of the network and its powerful
services.

The Need for AppWare

AppWare provides a solution to two critical challenges currently facing
the software development community:

● It simplifies the development of network applications in a
complex, heterogeneous environment.

● It shortens the network application development process and
makes it more efficient.

Developers who create network applications must deal with the
growing numbers of operating systems, development application
programming interfaces (APIs), computing standards and development
toolkits available today. AppWare hides these complexities from
developers by providing them one uniform set of APIs for accessing
different operating systems, graphical user interfaces (GUIs) and
network services. Using AppWare, programmers can write the
application code once and run the application on different operating
systems and networks.

Even with a single API and one code path, however, corporate and
vertical software developers cannot afford to create applications using
line-by-line coding -- a time-consuming task that requires specialized
skills. AppWare gives programmers the ability to build applications by
using large-grained, interchangeable software components. This way,
developers can quickly construct powerful, reliable applications without
writing a single line of code.

With AppWare, developers can quickly and easily build applications
that provide users the full benefits of the power of their networks. As
the leading provider of network operating systems and services,
Novell has developed AppWare to provide the underlying APIs,
development technologies and services required to successfully write
network applications.

Development Challenges

The Complexity of Developing Network Applications in a
Heterogeneous Environment

On average, one major new operating system or service API is
delivered to developers every 45 days. This rapid pace makes it
virtually impossible for application developers to keep up with
emerging technologies. Resource constraints force developers to
choose among the available alternatives. Often, developers can only
afford to focus on one platform or operating system, limiting the
markets and minimizing the users' needs that their products can
address. Consider this challenge in the following contexts:

Multiple Networking Models

Application developers are currently faced with an unprecedented need
for network access and functionality. Now that networks dominate the

computing environment, software developers are shifting their focus
from writing standalone applications to creating network applications.
Developers must contend with a variety of network models to deliver
the services and data their users require.

The widespread presence of heterogeneous computing environments
has made the choice of development platforms difficult, as developers
try to anticipate the best markets for their products. In the near future,
network accessibility and functionality will determine the success or
failure of many organizations.

Multiple Desktop Platforms

To support multiple platforms, developers must learn all the details of
the desktop platforms on which their applications run. For example, if a
developer had to write a million lines of C code to create an application
for MS Windows, that developer would likely have to rewrite most of
that code for each platform on which the application will run, such as
Macintosh, UNIX or OS/2. Furthermore, developers must know how to
navigate and control the networks that link these various desktop
platforms. Thus, in most cases, the knowledge, skills and resources
required to create network applications have been prohibitive.

The Inefficiency of Developing Network Applications

Assume that the complexity problem was solved and programmers had
access to all major operating systems and networks through one
standard set of APIs. Even in this case, the traditional application
development process requires writing code from scratch using third
generation languages (3GLs) such as C or C++. Typically, this method
of application development is used by horizontal application vendors
who work on multi-million dollar projects that can take years to
complete.

Corporate and vertical software developers, however, can no longer
afford to create applications using this method. Through several
corporate advisory councils, Novell has learned that desktop custom
applications have about one-fifth the lifespan and take 50 percent
more time to create than mainframe custom applications. Corporations
cannot downsize their mainframe applications without a more efficient
method of developing and deploying applications. As a result,
corporations are running into severe roadblocks when they attempt to
replicate mission-critical mainframe applications on desktops and
networks.

The industry has reached a point where developers are demanding a

more effective response to these problems than today's tools and
techniques can provide. Just as the operating system solved the
application crisis for desktop computers, AppWare solves the current
crisis for network applications (see Figure 1 on page 8 of the hard
copy).

The AppWare Solution

AppWare is not an operating system or application. AppWare is a new
layer of software that provides two components of technology to solve
the two primary challenges described previously. These two
components are the AppWare Foundation and the AppWare Bus.

The AppWare Foundation is a "fire wall" that insulates programmers
from the growing complexities of multiple operating systems, GUIs and
networks. The AppWare Foundation provides 3GL application
programmers with a consistent, cross-platform set of APIs. By writing
to this single API set, developers can access existing GUIs, operating
systems and network services.

The second AppWare component, the AppWare Bus, provides large-
grained, interchangeable software modules that corporate and vertical
developers can use and reuse to quickly construct new network
applications, without having to write code. These software components
are called AppWare Loadable Modules (ALMs).

The AppWare Bus and ALMs are the software equivalent of the PC
mother board and interchangeable plug-in cords. When ALMs are
plugged into the AppWare Bus, their functionality becomes rapidly
accessible for building new applications. In addition, third parties can
offer their technology in the form of new ALMs.

The AppWare solution provides the following benefits:

● AppWare enables developers to easily access network services
from a variety of desktop platforms. AppWare makes it as easy to
incorporate messaging, telephony, multimedia, imaging and other
network capabilities into an application as it is to incorporate basic file
and print services.

● Traditional programmers can use one set of APIs, instead of
having to master the underlying details of how to define, access and
use the wide array of services available today. As a result, developers
can concentrate on application-specific functionality.

● Reusing existing software modules greatly reduces application

development time. AppWare enables developers to construct
applications with only a fraction of the time and effort required when
building an infrastructure along with an application.

● Once familiar with AppWare, developers can reuse its
components as needed, rather than having to recreate the same
components for each new application.

● AppWare is open at all levels and will be available on all major
operating systems and networks. Therefore, it opens broader
application markets than have previously existed.

● Because AppWare is inherently multiplatform in its design and
capabilities, it relieves developers of most of the effort required to
build and maintain different application versions for each platform they
support. Applications written on top of the AppWare Foundation API set
can be recompiled to run on DOS, MS Windows, Windows/NT, OS/2,
UnixWare and the Macintosh desktops, as well as NetWare and
UnixWare servers.
Novell intends to work with developers, development tool vendors,
hardware and operating system suppliers, and other third parties to
make AppWare a standard for network application development.
AppWare will remain open and extendible and will incorporate
important development and interface standards. Therefore, AppWare
can be welcomed into companies that must protect themselves from
the vagaries of proprietary system components.

AppWare: A Technical Description

This section starts by describing the heterogenous nature of today's business
environment which has led to the developmnet of AppWare. This description
is followed by a representation of the AppWare components and the third-
party tools that support it. The section concludes with an example of using
AppWare for developing network appplications.

The Business Computing Environment

Contemporary computing environments consist of multiple hardware
and operating system platforms. These platforms range from network
or application servers, such as NetWare or UNIX, to mainframe systems
that process transactions and act as repositories for consolidated
enterprise information.

New facets of these environments include mobile computing and
dedicated systems. Mobile computing encompasses notebook systems
and personal digital devices, all of which need access to network

services and messaging support. Dedicated systems consist of
microprocessors or computing systems embedded into a broad range
of devices, from machines on the shop floor to hand-held data
acquisition devices for inventory management in retail settings.

As microprocessor technology continues to decrease in cost,
computing intelligence will find a role in almost every piece of
machinery and in every appliance imaginable. Examples range from
lathes on the shop floor to hand- held devices. The term ubiquitous
computing applies to any intelligent device that incorporates some
computer technology. To reap the maximum benefits from these
intelligent devices, developers must include them in the networked
environment so they can access, as well as provide, network services.

As Figure 2 shows (see page 11 of the hard copy), a heterogeneous
computing environment clearly exists and includes the following:

● At the desktop, MS Windows, Windows/NT, Macintosh, OS/2,
Novell DOS and UnixWare Personal Edition provide operating system
services.

● At the server, NetWare and UnixWare provide network services
that cover everything from basic file and print to database and
telephony services.

● Heterogeneous networking environments include IBM's SAA,
USL/SunSoft's Open Network Computing (ONC), the Open Software
Foundation's (OSF) Distributed Computing Environment (DCE), as well
as Novell's NetWare operating system.

● Mainframe and mini-computer platforms host legacy systems,
high-volume transaction systems and an enterprise's repositories of
consolidated information.

● Intelligent (or ubiquitous computing) devices such as
manufacturing equipment on the shop floor can be integrated through
the network with a CAD engineer's design workstation, so that they
may be reconfigured electronically.

Figure 3 (see page 11 of the hard copy) shows the three categories of
software required to connect these many different systems.

Each of these categories offers many competing APIs and services.
Figure 4 (see page 12 of the hard copy) highlights some of these APIs
and services.

In the network services category, a number of network services exist,
including electronic messaging, database, directory services, and
others. The complexity is intensified because many of these services
have several available implementations, with different APIs. Consider
electronic messaging, for example. At least four competing standards
exist for messaging APIs: vendor independent messaging (VIM),
Microsoft Messaging API (MAPI), CCITT Standard X.400 and Novell
Message Handling Services (MHS).

In the client operating systems category, developers need to select the
appropriate operating system for particular applications. Some of
these operating systems include MS Windows, Macintosh, UNIX, OS/2
and DOS.

At the network category, multiple network standards can deliver
network services to the layers above. Appendices A through D describe
in detail the technologies that comprise this layer.

Each category offers a wide array of valuable choices. Each single API
or standard can be a critical technology essential to the construction of
a particular application. The challenge today is to leverage, unify and
integrate these choices to produce real-world, mission-critical network
applications. This is the infrastructure on which AppWare rests.

AppWare's Components

Just as a set of blueprints lays out the plans and components needed
to construct a building, a computing architecture lays out the
conceptual model required to organize a particular system. In addition,
a computing architecture identifies the system's components and their
relationships. Figure 5 (see page 13 of the hard copy) illustrates the
components of AppWare.

AppWare is based on the concept of leveraging existing technologies.
Thus, the AppWare architecture builds on top of all major client
operating systems and most major distributed services, including file
systems, shared printing resources, document management, imaging,
telephony, digital multimedia and directory management services.

In the past, many of the functions these services supplied were hard-
coded into applications. This doubled the effort required to deliver an
application. Early GUI programs had to be built directly to the graphics
hardware, which proved to be an extremely time-consuming task.
Developers soon learned to create libraries of the common, reusable
functions, leading to the development of specialized GUIs. Though
applications with GUI interfaces were easy to use, their development

cost could still be prohibitive. It was not until the Apple Macintosh
pioneered the availability of a widespread, consistent GUI, that
applications built around this technology began to gain momentum.

Database technology development has experienced a similar
progression. At first, developers wrote applications directly to the file
system, and the data was managed differently for each individual
application. The format of the data was also application-specific, which
made it difficult to share data among applications. Again, the next
stage was to construct common libraries for data storage and access.
This refinement allowed particular systems of programs to share data.
However, as data storage and access technology continued to become
more widespread and complex, corporate MIS were unable to keep up
with the need to deliver data over the network to multiple users across
multiple platforms. In response, database vendors began providing
cross-platform database engines that a number of applications share
over the network. Today, those same database vendors are trying to
provide standards, such as Structured Query Language (SQL) and
Integrated Database API (IDAPI), that address the issues inherent in
managing data simultaneously across multiple databases and data
models.

A broad variety of vendors providing a wide array of services, as well
as multiple implementations of these services, has created the need
for the first AppWare component, called the AppWare Foundation.

The AppWare Foundation

The AppWare Foundation hides the complexities of networks, local
operating systems, and GUIs from developers who write line-by-line
code using 3GLs, such as C, C++, COBOL and Pascal (see Figure 6 on
page 14 of the hard copy). The AppWare Foundation provides a
consistent, standard set of APIs that allows developers to access the
services provided by both the network and the local operating system.
Using the AppWare Foundation, developers can create cross-platform
network applications without compromising system performance,
application functionality and compatibility with existing and emerging
technologies.

The AppWare Foundation includes the Universal Component System
(UCS) technology which Novell acquired with the purchase of Software
Transformation, Inc. Other components include the CPI-C interfaces for
host connectivity and the X/Open distributed transaction processing
APIs, which are supported by Tuxedo. The AppWare Foundation also
supports multiple compound document architectures, such as Apple's
Compound Document Architecture and Microsoft's Object Linking and

Embedding (OLE) architecture. Appendix E describes these
technologies.

Applications written to the AppWare Foundation can connect
transparently to existing network services. An application programmer
need no longer be aware of where a service is located or how it can be
accessed. The programmer simply chooses the application's target
platform, and the AppWare Foundation builds the necessary code to
connect the application to the native services of that platform. When
the developer recompiles the same code for a different platform, the
AppWare Foundation implements the appropriate native services for
the chosen platform, again without involving the programmer. For
example, using the AppWare Foundation, a programmer writes the
same code whether he or she is accessing files from an application on
a Macintosh, MS Windows or a UNIX platform.

Application Portability

Using the AppWare Foundation's API set, the developer writes the
application code only once and recompiles it to run on multiple
platforms. This kind of portability for desktop applications is critical
because many organizations have a mix of desktop platforms. Even
organizations that have settled on a single desktop platform may need
such portability to accommodate and take advantage of new
technologies as they emerge. The AppWare Foundation provides
portability across a wide variety of platforms, letting businesses take
advantage of new technologies while preserving current system
investments.

The goal of platform portability toolkits is to provide the same
functionality across different platforms. As simple as this may sound, it
is actually quite difficult. For example, almost all applications allow
users to enter text in one form or another. However, text-editing
ranges from basic editing, such as modifying the data fields in a forms
package, to highly sophisticated editing, such as revising a document
using a publishing system. When features are available on all
platforms, as is the case with simple text entry fields or pull-down
menus, compatibility problems seldom arise. The real question is how a
multiplatform development environment should handle features not
available on all platforms, such as multiple fonts in a text box or undo
capability.

Platform portability toolkits typically take one of two approaches: they
provide only common features (least-common-denominator toolkits) or
they provide all the features (superset functionality). Taking the least-
common-denominator approach is very efficient, but does not meet

specific functionality requirements. However, providing a complete
superset of the features available on each platform is probably
impossible.

The AppWare Foundation does not provide portability by dropping to
the lowest common denominator of all the supported environments.
Rather, it identifies real-world application requirements for given areas
of functionality. Upon establishing such requirements, functionality was
added to those platforms that required it. While this is a superset
approach, AppWare Foundation stops short of providing a 100 percent
superset, concentrating instead on the functionality that commercial
developers are most likely to need. Feedback from current users
indicates that the AppWare Foundation is one of the most robust
technologies available.

Most horizontal business applications can be coded exclusively to the
AppWare Foundation, ensuring maximum portability and transparency
of access to network services. However, the architecture is flexible and
will allow programmers to drop to the operating systems' native APIs to
gain more direct access to the system software or hardware as needed.
Therefore, applications can still take full advantage of the unique
functionalities and native services of local operating systems and
networks.

In addition, programmers are free to use the platforms, compilers,
linkers and debuggers of their choice. The AppWare Foundation is
compatible with Symantec, Borland, Microsoft, MPW, Lightspeed,
SABER and GNU compilers, and with Multiscope, Codeview, and SADE
debuggers.

Underneath the AppWare Foundation exists the Common Request
Broker Architecture (CORBA) specified by the Object Management
Group (OMG). CORBA provides an infrastructure that allows objects to
communicate, and is independent of specific platforms and languages
used in the implementation of the objects. The CORBA architecture is
described in Appendix F.

Benefits of the AppWare Foundation

The AppWare Foundation provides application developers with a
complete set of APIs for implementing enterprise business applications
using 3GLs. The benefits of the AppWare Foundation include the
following:

● A single API set for different operating systems and networks

● Portability of the applications built to the AppWare Foundation

● Transparent access to network services

● High application performance

● Support for the evolution to distributed objects

For additional information about the AppWare Foundation, please refer
to the Novell AppWare Foundation White Paper.

The AppWare Bus and AppWare Loadable Modules

Although the AppWare Foundation simplifies the application
development process, it supports only those developers who write
applications with 3GLs. In other words, one must still be a well-trained
programmer in traditional programming languages to create
applications based on the AppWare Foundation set of APIs. Corporate
and vertical software developers using 4GL and 5GL tools require a
much more rapid, efficient development platform.

In these rapidly changing environments, access to prefabricated
software is the key, thereby transforming the creation of applications
from an art form to an assembly line production model. Building
software with 3GLs is similar to building a car from raw metal, glass,
rubber, and plastic. Building software using reusable modules is
parallel to building a car from ready-made parts, such as an engine,
wheels, seats, instruments and a steering wheel.

The AppWare Bus is a software engine that does for applications what
the hardware bus did for personal computers -- namely, it manages
and coordinates the interaction of prefabricated, plug-in software
components called AppWare Loadable Modules (ALMs) (see Figure 7 on
page 17 of the hard copy).

ALMs are software objects that provide access to the functionality
provided by both local operating systems and network services. ALMs
can range from simple graphical utilities and spreadsheet modules to
network services such as database and messaging. Business
application developers can create new applications quickly and easily
by linking different ALMs. The Novell Visual AppBuilder tool is designed
specifically for this task. This tool is described in more detail in the
following pages. Developers can also use other 4GL and 5GL tools that
are compatible with the AppWare Bus to create new applications.

ALMs are large-grained, high-level software objects, which means they

are much larger and more automatic than, for example, C++ classes.
In a typical business application, a developer may use only 25 different
ALMs to create all the needed functionality. Using C++ classes, as
many as 500 to 1000 different classes can be used to create the same
functionality. ALMs are more intelligent and functional than lower-level
software components such as classes, but are smaller than today's
massive horizontal applications (See Figure 8 on page 17 of the hard
copy). Since ALMs plug into the AppWare Bus, they can communicate
and work together -- even when created by different programmers.

Corporate developers typically have many in-house projects with
overlapping components, such as custom reporting applications for
different departments that must access the same data. Using ALMs,
corporate developers can link the appropriate modules to create
applications, reusing existing modules and leveraging each other's
work.

Creating ALMs

Novell has already created a number of basic and network ALMs, such
as MHS and Btrieve, and is actively working with a number of ISVs to
provide additional ALMs. For example, Cheyenne Software is creating
ALMs for imaging and document management. Various third parties
have already built ALMs for accessing Oracle and Sybase databases. In
addition, MIS programmers may want to create new ALMs to provide
key elements of functionality with information systems. Then, business
application developers can link ALMs without having to understand
how they were built.

ALMs are built using 3GLs and the AppWare Foundation. ALMs can be
created with almost any Microsoft, Borland, Symantec, or MPW
compiler. The Novell ALM Construction Kit provides the interfaces
necessary to plug ALMs into the AppWare Bus.

AppWare eliminates at least two risks for custom software providers:
time-to-market and environment selection. The ALMs available on the
AppWare Bus can significantly reduce application development cycles.
Also, AppWare's availability for most major commercial desktops
reduces the cost of a porting effort to a simple recompile.

Novell Visual AppBuilder

Novell now offers a high-level programming tool that has been tightly
integrated into AppWare. The Visual AppBuilder tool provides an
environment for rapid application development of network and
standalone applications. Visual AppBuilder allows applications to be

constructed by selecting icons that represent different ALMs. Then,
developers use on-screen links to create application logic (see Figure 9
on page 18 of the hard copy). Visual AppBuilder provides a 5GL-level
development environment, enabling programmers who do not
necessarily know the details of 3GL development to rapidly create full-
featured, reliable applications.

The range of applications developers can create is limited only by the
range of ALMs provided by Novell and third parties. This makes Visual
AppBuilder an ideal, easy-to-use tool for developing corporate and
vertical business applications that keep pace with today's changing
business environment.

For example, consider a developer who wants to provide an easy-to-
use automated telephone directory system for a global corporation.
Suppose the directory information is stored in an Oracle database and
the users of this program are non-technical, so the application needs a
multimedia front end. In addition, the available hardware offers
automatic answer and dialing through the telephony services on the
network.

Using a 3GL tool, it would take several years and many developers to
create such an application. Visual AppBuilder enables a few developers
to build this application in only a week. A developer would simply
connect graphically the Oracle database ALM, the multimedia ALM and
the telephony ALM to create the new application without writing
traditional line-by-line coding. Because ALMs are based on the
AppWare Foundation, the application can be ported quickly to any
common operating system and network.

ALMs make available all the services provided by the network and the
local operating system. With ALMs for directory services, security,
licensing, software distribution, telephony, work flow, imaging,
multimedia and even office productivity, a new world of networked
applications is now open to corporate and vertical software developers.

Benefits of the AppWare Bus and ALMs

The AppWare Bus, ALMs and Novell's Visual AppBuilder benefit
corporate developers, smaller ISVs, system integrators and Value-
Added Resellers (VARs) whose software needs exceed horizontal
productivity applications. Some of these benefits include the following:

● Rapid "plug-and-play" model for application development

● Network services available to all developers

● Reliable, powerful applications for corporate MIS, vertical
software developers and system integrators

● 4GL and 5GL development tools, rather than 3GL tools

● Use of 100 percent open and extendible through new ALMs

● Portable over major operating systems and networks

For additional information on the AppWare Bus, ALMs and Novell's
Visual AppBuilder, please refer to the Novell Visual AppBuilder White
Paper.

Integration with Third-Party Tools

AppWare's open architecture allows application developers to integrate
the AppWare Foundation and AppWare Bus with a variety of third-party
tools to provide additional functionality. For example, using AppWare
Foundation APIs with Microsoft's Visual C++ can increase the efficiency
of creating cross-platform applications. Novell's goal is to work closely
with third party tool vendors to accomplish the following:

● Provide access to network and other services through the
AppWare Foundation, so developers can deliver more sophisticated
applications while writing less code.

● Extend the base of ALMs, allowing developers to quickly
construct business solutions by combining ALM building blocks.

● Allow 4GL tool vendors, such as Gupta Technologies, Powersoft
and Easel Corporation, to access the functionalities of ALMs.

Using AppWare: An Example

Suppose a developer wishes to create a networked document
management application that will, among other things, route
documents to fax servers and electronic mail servers. The application
is designed such that the document destination handling is performed
on a file server, but the user interface and editing are handled at the
client workstation. Consider the development process using three
different approaches of software development tools.

First Scenario

Using a relatively traditional set of application development tools, a

developer must write core application modules that perform the
document editing, as well as other software modules. Developers
would have to do the following:

● Design protocols to establish communications between the client
workstation and the machine providing the routing services

● Handle the construction, buffering, and sending and receiving
packets at both ends of this process.

● Handle error detection, resending and acknowledging packets.

● Design some mechanism for locating the service provider,
perhaps as rudimentary as having the user enter the name or address
of the remote machine.

● Design an algorithm for establishing and verifying the identity of
the client, possibly involving maintaining passwords or keys.

● Design and implement a minimal command language to enable
the processes to perform such functions as opening a file remotely (for
reading and writing).

● Design a user interface and implement the routing services on
the target server machine and design the user interface code on the
target client machine.

● Port the code for both the client and the server to several
different environments, each one having specific communications
code, graphics code and operating system calls.

This scenario provides innumerable challenges to the programmers
and takes months or years to implement. It also presents a challenge
for testing and maintenance, which grows exponentially with each new
version of the product.

Second Scenario

In the second scenario, the developer of the same document
management application will still have the same editing and routing
code to implement, but can limit the communications and
housekeeping modules. In this scenario, the developer may use, for
example, Remote Procedure Calls (RPCs) to establish communication
and perform the authentication, RPCbind or NIS to locate the service,
and some GUI tools to build the user interface. The developer must
write a specification file for RPCgen, determine whether a datagram or

guaranteed message service is necessary for this specific application,
and provide a means to specify the acceptable transport service, such
as a configuration file. After writing the service code for the server and
the user interface and writing the front-end code for the client
workstation, the developer ports the code to different platforms, such
as Macintosh, MSWindows and UnixWare.

Third Scenario

In the third scenario, the developer uses Visual AppBuilder or another
AppWare-compatible tool to rapidly build his application, on both the
server and the client sides. The developer designs and implements the
solution by graphically linking ALMs. The ALMs, for example, might be
a text editor, a document tagging service, fax services and electronic
mail services. The ALMs are represented by icons and the application
is created by linking the appropriate icons.

The ALMs the developer uses have already been written to the
AppWare Foundation. These ALMs rely on the underlying location
broker to locate the fax and e-mail services, to verify and select the
appropriate available transports, and to authenticate the user. The
developer uses the windowing system provided by GUI ALMs to build
the user interface and recompile the application once for each target
environment.

Conclusion

Building an infrastructure is an ambitious undertaking which can never
be totally completed. The construction of an interstate highway system
provides a good example. The expense and effort were considerable,
but the benefits reaped from making new businesses and opportunities
possible far surpassed the outlay in resources.

Similarly, a development infrastructure like AppWare can enable
applications that might otherwise be impossible to bring to market. By
providing an underlying collection of high-level, advanced services and
the communications necessary to link service consumers and service
producers, AppWare makes the construction of distributed applications
far simpler than ever before.

Instead of the five- to eight-year effort it has taken to bring groupware
products to market, AppWare can cut the time required to deliver such
products to less than two years. The time savings results from the
ability to use predefined services for database, calendaring, messaging
and the like, without having to construct them from scratch. Also, the
ability to use the network without having to subdue the protocol,

communications and handshaking issues saves additional time.

By adopting AppWare as a development framework, application
developers gain more than time. They gain:

● Access to a broad range of platforms without requiring multiple
instances of their code for every platform they wish to support,
eliminating the support and maintenance headaches.

● Access to a rich set of services along with transparent network
access, thereby cutting application development time and extending
the kinds of application problems they can solve.

● Control over a set of application tools and methods enabling
developers to easily create client- and server-side modules.

All this adds up to increased developer productivity, better application
flexibility, improved leverage of effort and broader markets for
software.

By incorporating AppWare-based applications into their networks, users
benefit from AppWare. Users gain:

● More broadly available network services. The power and
flexibility of AppWare-based applications will make distributed services
more broadly available.

● More flexibility and ability to change in the face of shifting needs
and requirements. The customized nature of AppWare-based
applications enables this flexibility.

● More extendible applications. The open-ended nature of ALMs
makes such applications far more extendible than before and enables
them to take advantage of new or enhanced services.

All this adds up to increased user productivity, more responsive and
capable applications and rapid incorporation of technological changes
and advances.

Why Novell?

The primary reason Novell is taking this bold step is to break the
application backlog that threatens to slow the growth of the
networking industry. Other important reasons include responding to
customers' demands for more advanced, distributed applications; the
desire to make networking completely central to information systems;

and the fundamental need to improve the technology used to solve
business problems. Novell believes its work and expertise in laying the
groundwork for an application development infrastructure, and its
openness to working with partners and customers, make Novell
uniquely qualified to meet this challenge.

Although Novell did not focus on the development marketplace in the
past, it is uniquely positioned to deliver a development infrastructure.
For the last ten years, Novell has been building some of the most
advanced networking solutions available in the marketplace. Novell
offers support for more networking topologies and technologies than
any other vendor. Likewise, Novell supports more client and service
platforms than all other vendors, ranging from desktops to
mainframes, all of which can interoperate freely within the NetWare
environment.

Novell also offers the broadest range of integrated internetworking
solutions, for both wide-area and local-area access, across most
available communications technologies. These offerings comprise the
most complete communications and interoperability solution available
from any vendor. In summary, Novell has the networking and
interoperability coverage needed to support an infrastructure.

Just as Novell has shielded complexity and raised the level of network
productivity in the past, Novell can shield complexity and raise the
level of productivity for networked applications development and
deployment.

No single company can provide a complete infrastructure, and Novell's
unparalleled partnerships and programs play an important role in the
development of a complete infrastructure. Novell has always been a
partnering company; Chairman and CEO Ray Noorda is credited with
coining the term "coopetition" to reflect Novell's willingness to
cooperate with its fiercest competitors. Novell has also been an
impetus for forming industry-wide groups, like the Technical Support
Alliance (TSA), to bring vendors together under a single support
umbrella, and avoid the finger-pointing exercises that network
troubleshooting can so often cause.

Novell offers testing and compliance programs, such as "Yes It Runs
With NetWare" for NetWare-compatible products. Novell also has one of
the broadest education and certification programs for networking
specialists in the world, the "Certified NetWare" professional programs.
In addition, Novell offers options for training, service and support that
continue to be widely emulated throughout the computing industry.
Novell also maintains relationships and alliances with key consulting

firms, major platform vendors and customer groups, to stay in close
touch with industry trends, technologies and customer requirements.
These partnerships and programs demonstrate Novell's ability to enlist
broad support for an infrastructure, as it works closely with all the key
players needed to stay ahead of emerging technologies.

In addition, Novell offers a wide range of distributed services to
multiple client platforms through its NetWare and Unix products, from
file and print, to database, messaging and directory. In the next 18 to
24 months, Novell will add support for services to provide electronic
software distribution; software license metering and monitoring;
imaging; telephony; document management; and multimedia from
internal efforts and with joint development with companies like
Imagery and Fluent Technologies (multimedia). These services
highlight the ideal platform Novell offers to supply the advanced
services that an infrastructure can deliver.

Novell has the ability to excel at enterprise networking and
interoperability; it has the partnerships and programs needed to
support enterprises; and it provides the richest set of distributed
services. Therefore, Novell is pushing forward to build an application
development infrastructure to leverage these assets.

Novell clearly recognizes that the process of realizing the AppWare
architecture is a lengthy, difficult and labor-intensive task. Novell
cannot tackle this effort alone; significant input and cooperation from
partners and developers has been and will be required. Even so, the
potential benefits are enormous, and the rewards are significant.

To prove its depth of commitment to AppWare, Novell will publish the
AppWare interfaces as they are defined. Novell also intends to keep the
AppWare development tools open to all interested third parties, and
will augment the technologies and interfaces that AppWare
accommodates based on customer requests and market demands. In
addition, Novell is committed to using AppWare for its own internal
development efforts.

Novell is committed to providing complete education, service and
support for all components of the AppWare initiative, and to providing
copious background and training materials about the AppWare
architecture. Since the value of an infrastructure is measured only by
the way it is used, Novell's primary goal is to build an infrastructure
that suits the needs of the developers who use it.

